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Losses Two-Port

Doubled Terminated Reactance Lossless Two-ports

Most common situation, best sensitivity properties for matched termination conditions.
Power entering at port I equals the power leaving into load at port 2. If z;(jw) = Rg and
Z>(jw)=Ry, the maximum power (voltage, current) available from the source reaches the

load, and any departure from the nominal value in an internal element can only lower it:
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Figure 6-1 Doubly terminated reactance two-port.
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Figure 6-2 Output power P, as a function of inductance L;.

The zero-sensitivity property holds strictly at the discrete frequencies where exact
matching exists; for low loss, the sensitivity will be low. The sensitivity to variations in
the terminating resistors is not very low, but nearly constant in the passbands of the two-

port:

gain
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6-2 TRANSDUCER PARAMETERS

The transmission properties of the doubly terminated two-ports can conveniently
be described using the voltage ratio (Fig. 6-1)

Vs(s)

A, =
V EG

(6-1)

since E; is known. It is more expedient, however, to start out by considering the
power-transmission properties of the two-port. Note that for singly or unter-
minated two-ports power-transfer relations were meaningless, since either the
generator was a pure voltage or current source, with (theoretically) unlimited
power-supplying capabilities or the load was an open or short circuit which
required zero power for sustaining a nonzero output voltage or current, respec-
tively. For doubly terminated two-ports, however, the generator can only supply a
finite amount of power. This power, as is easy to prove, is at most

EG

Bl
max 4RG

(6-2)

P.., 1s obtained only for a matched load, i.e., for Z, = R, (Fig. 6-1).7 At the same
time, maintaining a voltage V, across the resistor R, requires a power input

| Va|?
P2l =
=R (6-3)
which is transformed into heat or radiant energy. Obviously, the relation
Bne Sl (R Bt
ey e e LT S i | -
P, 2 \/RG | s (6:4)

must hold. The ratio P,,, /P, therefore provides a well-defined measure of the
power-transmission efficiency of the terminated two-port. For P, /P, = 1, all the
power which the generator can supply is transmitted to the load; for
P.x/P> — o0, none of it is. It seems therefore logical to define and use, instead of
Ay, the transducer factor

I SRE B iRy
His)=; [t = [t—— (6-5)
2V R Vals) 2V Rg Ayls)
to characterize the two-port. It should be noticed that H(s), in contrast to

previously defined transfer functions, is an input-quantity/output-quantity ratio.
By (6-4), for a passive two-port 1

Transducer power gain: ——

2
P |H|
2 2 smn 6-6
Pl (6-6)
Transducer voltage gain: ﬁ

+ Note that all voltages and currents in the discussions of this chapter refer to effective values. Thus,
a voltage signal V, cos (wt + ¢) is denoted by its phasor V = (¥, /ﬁ)ef“’.
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Let the transducer constant T" be defined as the natural logarithm of H:
Fr'fnH=0+jf ~afln |H| p£/H (6-7)

Here o is the transducer loss (in nepers), and f is the phase lag of the output voltage
V, behind E;; B, which is measured in radians, will simply be called the phase of
the two-port.

It is usual to measure the loss in decibels. This unit is defined by

a(in dB) = 20 log |H | (6-8)
Hence 1 Np = 20 log ¢ dB ~ 8.686 dB (6-9)

where Np is the abbreviation for nepers.
Other useful parameters of the doubly terminated two-port are the reflection
factors. Referring to Fig. 6-1, we see that these are defined by the relationst

RG_ZI

=% 6-10
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R, -Z

and P mmitl s (6-11)
2 S RgwZs

Here, Z, is the impedance seen at the primary port (terminals 1-1"), with the
secondary port terminated in R,
V;
Z, = (6-12)
11
Similarly, Z, is the driving-point impedance at the secondary port when the
primary port is terminated by R, (but with E; set to zero and R, removed). Note
that with E at the primary port, as shown in Fig. 6-1,
V.
— 2. R M7 (6-13)
L 12
To give a physical meaning to the reflection coefficients, consider the power
flow through the network. Although the generator is capable of supplying a
maximum amount of power P, in fact it supplies only

max?’

to the input of the two-port. Since the two-port is lossless, P, travels through the
two-port undiminished and eventually emerges as the power flow into the load:

ek

R,
Used in S parameters

P2 =P1 (6-15)

+ The alternative definitions p,"= (Z, — R;)/(Z, + R;) and p, = (Z, — R,)/(Z, + R,) have some
conceptual advantages and are also often used.
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This realistic picture can be replaced by a hypothetical one as follows: the genera-
tor is assumed always to supply its maximum power P, to the primary port of
the two-port. Because of the mismatch (R; # Z,) a part P, of P, is reflected
from the two-port, and only the remainder

PZ:Pmax_Pr (6-16)

passes on to the load. The reflected power P, leaves the two-port at port 1 and is
eventually reabsorbed by the generator. The power flow is schematically il-
lustrated in Fig. 6-3. It is readily recognized that in the steady state the two
concepts described give the same results for the net power flow at any point in the
network and hence the second interpretation (borrowed from the physics of
transmission-line systems) is permissible.

By Egs. (6-14) to (6-16),

E}
P.=P, —P, = 4R(a —Re 1,1*Z, (6-17)
We denote
Z, =R1 +JjX, (6-18)

Therefore for s = jw

E2 4R 4R R
P, = = (1_ ZGl11I2R1)=Pmax(l— L )
G

" AR E |R¢ + Z,|?
R+ R,)* + X? —4R;R
e Pmax ( G,,t,,,,l) -t,,, l 277 77»7767 l (6-19)
|RG + Z, |
since I, = E; /(R + Z,). After some simple calculation, we obtain
pins alio ol e o1 |2 6-20
r max R(; + Zl R X pl' ( x )

Hence, |p, |* is the ratio of the reflected power to the available generator power.

Evidently, |p, |* < 1.
| >

Generator Two-port Load

Figure 6-3 Power flow in a doubly terminated two-port.
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Figure 6-4 Two-port example.

Example 6-1 Find P,,,,, P,, p, P,, and V, for the circuit of Fig. 6-4 at w = 1 rad/s.
By elementary calculations

22 353 + 952 + 25 + 3
Poy=——~~=1W b7 A e AR P e
7 AANE) » 352 +9s + 1
and i1 =Zs 5 — 35 s 2
P g AP 190 fig+ 4
6 2_22 23 2 72
Hence i = S el W A Lo i ) RS

(— 1207 + 4)? + w¥(—3w? + 11)?
For w = 1, |p,|* = 33. Hence
P,=|p1|2Pmax=§—§W P,=Ppu—P, =54 W
On the other hand, by analyzing the network, we find
6

T s s+ 4
and hence, for s = j1,
| V2)? = '**'2'42”3'6*2 SipT z=2
(—12w* + 4)* + 0*(—3w® + 11)*? 32
| 3
Therefore = LRZTI o
and P,=P,,—P,=1—-%=%

as obtained via |p, |.

Next, we introduce the characteristic function K(s) of the terminated two-port
by the definition

K(s) = py(s)H(s) (6-21)
Then, for s = jw,
PP P
2 YR e S 623
IKI 'pl| |H| Pmax P2 P2 ( )

O=|K|2<OO
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Thus, |K|? gives the ratio of the reflected and transmitted powers. Hence |K |?
may take on any positive value between zero and infinity for s = jw.
The power relation

Pmax=Pr+P2 (6-23)
now gives
P P
—=_T41 6-24
B (6-24)
or, by Egs. (6-6) and (6-22), for s = jw,
VA = K e ] (6-25)

This equality (often called the Feldtkeller equationt) plays a central role in the
design of doubly terminated two-ports.

By their definitions, H(s), p,(s), and K(s) are all rational functions of s, with
real coefficients. Denoting their even and odd parts in s by the subscripts e and o,
respectively, we have

H(s) = Hf,(s) + H,(s) (6-26)
H( _S) = He(s) e Ho(s) (6'27)

On the jow axis H,(jw) is real and H,(jw) is imaginary. Hence

| H(jo)|* = [H.(joo)]? + ’H_Q‘L’)J
> (6-28)
|H(JUJ)'2 = Hg(ja)) — Hf(ja)) hd H(](U)H(—ja))

When we rewrite |K(jw)|* this same way and replace jo by s, the Feldtkeller
equation becomes

H(s)H(—s) = K(s)K(=s) + 1 (6-29)

This form is much more convenient for numerical calculations than Eq. (6-25).

Note that the argument used in deriving Eq. (6-29) from Eq. (6-25) is valid
only for s = jw. But Eq. (6-25) was only valid for s = jw to start with, since it was
derived from steady-state power considerations. Hence, this restriction is
harmless.

Next, some of the properties of H(s), p,(s), p,(s), and K(s) will be discussed
from a physical viewpoint. After writing H(s) in the form

E(s)
H{sy— P(s) (6-30)

where E(s) and P(s) are polynomials, the properties of E(s) will be investigated.
First of all, it is clear that the degree of E(s) must be equal to or greater than that

+ From Egs. (6-22) and (6-25), |H| * + |p,|* = 1. Historically. it is this relation which is due to
Feldtkeller.



